Topic:Trajectory Prediction
What is Trajectory Prediction? Trajectory prediction is the process of forecasting the future path of moving objects based on historical trajectory data.
Papers and Code
Nov 21, 2024
Abstract:Models for trajectory prediction are an essential component of many advanced air mobility studies. These models help aircraft detect conflict and plan avoidance maneuvers, which is especially important in Unmanned Aircraft systems (UAS) landing management due to the congested airspace near vertiports. In this paper, we propose a landing trajectory prediction model for UAS based on Generative Adversarial Network (GAN). The GAN is a prestigious neural network that has been developed for many years. In previous research, GAN has achieved many state-of-the-art results in many generation tasks. The GAN consists of one neural network generator and a neural network discriminator. Because of the learning capacity of the neural networks, the generator is capable to understand the features of the sample trajectory. The generator takes the previous trajectory as input and outputs some random status of a flight. According to the results of the experiences, the proposed model can output more accurate predictions than the baseline method(GMR) in various datasets. To evaluate the proposed model, we also create a real UAV landing dataset that includes more than 2600 trajectories of drone control manually by real pilots.
* 9 pages, AIAA SCITECH 2023
Via
Nov 21, 2024
Abstract:Coordinating the motion of robots with high degrees of freedom (DoF) to grasp objects gives rise to many challenges. In this paper, we propose a novel imitation learning approach to learn a policy that directly predicts 23 DoF grasp trajectories from a partial point cloud provided by a single, fixed camera. At the core of the approach is a second-order geometric-based model of behavioral dynamics. This Neural Geometric Fabric (NGF) policy predicts accelerations directly in joint space. We show that our policy is capable of generalizing to novel objects, and combine our policy with a geometric fabric motion planner in a loop to generate stable grasping trajectories. We evaluate our approach on a set of three different objects, compare different policy structures, and run ablation studies to understand the importance of different object encodings for policy learning.
* IEEE International Conference on Robotics and Automation (ICRA)
Workshop on Geometric Representations 2023
Via
Nov 20, 2024
Abstract:This work explores the relationship between state space methods and Koopman operator-based methods for predicting the time-evolution of nonlinear dynamical systems. We demonstrate that extended dynamic mode decomposition with dictionary learning (EDMD-DL), when combined with a state space projection, is equivalent to a neural network representation of the nonlinear discrete-time flow map on the state space. We highlight how this projection step introduces nonlinearity into the evolution equations, enabling significantly improved EDMD-DL predictions. With this projection, EDMD-DL leads to a nonlinear dynamical system on the state space, which can be represented in either discrete or continuous time. This system has a natural structure for neural networks, where the state is first expanded into a high dimensional feature space followed by a linear mapping which represents the discrete-time map or the vector field as a linear combination of these features. Inspired by these observations, we implement several variations of neural ordinary differential equations (ODEs) and EDMD-DL, developed by combining different aspects of their respective model structures and training procedures. We evaluate these methods using numerical experiments on chaotic dynamics in the Lorenz system and a nine-mode model of turbulent shear flow, showing comparable performance across methods in terms of short-time trajectory prediction, reconstruction of long-time statistics, and prediction of rare events. We also show that these methods provide comparable performance to a non-Markovian approach in terms of prediction of extreme events.
Via
Nov 19, 2024
Abstract:Trajectory prediction for multi-agents in complex scenarios is crucial for applications like autonomous driving. However, existing methods often overlook environmental biases, which leads to poor generalization. Additionally, hardware constraints limit the use of large-scale data across environments, and continual learning settings exacerbate the challenge of catastrophic forgetting. To address these issues, we propose the Continual Causal Intervention (C$^{2}$INet) method for generalizable multi-agent trajectory prediction within a continual learning framework. Using variational inference, we align environment-related prior with posterior estimator of confounding factors in the latent space, thereby intervening in causal correlations that affect trajectory representation. Furthermore, we store optimal variational priors across various scenarios using a memory queue, ensuring continuous debiasing during incremental task training. The proposed C$^{2}$INet enhances adaptability to diverse tasks while preserving previous task information to prevent catastrophic forgetting. It also incorporates pruning strategies to mitigate overfitting. Comparative evaluations on three real and synthetic complex datasets against state-of-the-art methods demonstrate that our proposed method consistently achieves reliable prediction performance, effectively mitigating confounding factors unique to different scenarios. This highlights the practical value of our method for real-world applications.
Via
Nov 21, 2024
Abstract:Trajectory representation learning is a fundamental task for applications in fields including smart city, and urban planning, as it facilitates the utilization of trajectory data (e.g., vehicle movements) for various downstream applications, such as trajectory similarity computation or travel time estimation. This is achieved by learning low-dimensional representations from high-dimensional and raw trajectory data. However, existing methods for trajectory representation learning either rely on grid-based or road-based representations, which are inherently different and thus, could lose information contained in the other modality. Moreover, these methods overlook the dynamic nature of urban traffic, relying on static road network features rather than time varying traffic patterns. In this paper, we propose TIGR, a novel model designed to integrate grid and road network modalities while incorporating spatio-temporal dynamics to learn rich, general-purpose representations of trajectories. We evaluate TIGR on two realworld datasets and demonstrate the effectiveness of combining both modalities by substantially outperforming state-of-the-art methods, i.e., up to 43.22% for trajectory similarity, up to 16.65% for travel time estimation, and up to 10.16% for destination prediction.
Via
Nov 21, 2024
Abstract:This paper presents ETA-IK, a novel Execution-Time-Aware Inverse Kinematics method tailored for dual-arm robotic systems. The primary goal is to optimize motion execution time by leveraging the redundancy of both arms, specifically in tasks where only the relative pose of the robots is constrained, such as dual-arm scanning of unknown objects. Unlike traditional inverse kinematics methods that use surrogate metrics such as joint configuration distance, our method incorporates direct motion execution time and implicit collisions into the optimization process, thereby finding target joints that allow subsequent trajectory generation to get more efficient and collision-free motion. A neural network based execution time approximator is employed to predict time-efficient joint configurations while accounting for potential collisions. Through experimental evaluation on a system composed of a UR5 and a KUKA iiwa robot, we demonstrate significant reductions in execution time. The proposed method outperforms conventional approaches, showing improved motion efficiency without sacrificing positioning accuracy. These results highlight the potential of ETA-IK to improve the performance of dual-arm systems in applications, where efficiency and safety are paramount.
Via
Nov 21, 2024
Abstract:Learning models of dynamical systems with external inputs, that may be, for example, nonsmooth or piecewise, is crucial for studying complex phenomena and predicting future state evolution, which is essential for applications such as safety guarantees and decision-making. In this work, we introduce \emph{Input Concomitant Neural ODEs (ICODEs)}, which incorporate precise real-time input information into the learning process of the models, rather than treating the inputs as hidden parameters to be learned. The sufficient conditions to ensure the model's contraction property are provided to guarantee that system trajectories of the trained model converge to a fixed point, regardless of initial conditions across different training processes. We validate our method through experiments on several representative real dynamics: Single-link robot, DC-to-DC converter, motion dynamics of a rigid body, Rabinovich-Fabrikant equation, Glycolytic-glycogenolytic pathway model, and heat conduction equation. The experimental results demonstrate that our proposed ICODEs efficiently learn the ground truth systems, achieving superior prediction performance under both typical and atypical inputs. This work offers a valuable class of neural ODE models for understanding physical systems with explicit external input information, with potential promising applications in fields such as physics and robotics.
Via
Nov 21, 2024
Abstract:We propose a path-tracking Hybrid A* planner and a coupled hierarchical Model Predictive Control (MPC) controller in scenarios involving the path smoothing of agricultural vehicles. For agricultural vehicles following reference paths on farmlands, especially during cross-furrow operations, a minimum deviation from the reference path is desired, in addition to the curvature constraints and body scale collision avoidance. Our contribution is threefold. (1) We propose the path-tracking Hybrid A*, which satisfies nonholonomic constraints and vehicle size collision avoidance, and devise new cost and heuristic functions to minimize the deviation degree. The path-tracking Hybrid A* can not only function in offline smoothing but also the real-time adjustment when confronted with unexpected obstacles. (2) We propose the hierarchical MPC to safely track the smoothed trajectory, using the initial solution solved by linearized MPC and nonlinear local adjustments around the initial solution. (3) We carry out extensive simulations with baseline comparisons based on real-world farm datasets to evaluate the performance of our algorithm.
Via
Nov 20, 2024
Abstract:Decision-making in robotics using denoising diffusion processes has increasingly become a hot research topic, but end-to-end policies perform poorly in tasks with rich contact and have limited controllability. This paper proposes Hierarchical Diffusion Policy (HDP), a new imitation learning method of using objective contacts to guide the generation of robot trajectories. The policy is divided into two layers: the high-level policy predicts the contact for the robot's next object manipulation based on 3D information, while the low-level policy predicts the action sequence toward the high-level contact based on the latent variables of observation and contact. We represent both level policies as conditional denoising diffusion processes, and combine behavioral cloning and Q-learning to optimize the low level policy for accurately guiding actions towards contact. We benchmark Hierarchical Diffusion Policy across 6 different tasks and find that it significantly outperforms the existing state of-the-art imitation learning method Diffusion Policy with an average improvement of 20.8%. We find that contact guidance yields significant improvements, including superior performance, greater interpretability, and stronger controllability, especially on contact-rich tasks. To further unlock the potential of HDP, this paper proposes a set of key technical contributions including snapshot gradient optimization, 3D conditioning, and prompt guidance, which improve the policy's optimization efficiency, spatial awareness, and controllability respectively. Finally, real world experiments verify that HDP can handle both rigid and deformable objects.
* arXiv admin note: text overlap with arXiv:2303.04137 by other authors
Via
Nov 17, 2024
Abstract:Reliable motion forecasting of surrounding agents is essential for ensuring the safe operation of autonomous vehicles. Many existing trajectory prediction methods rely heavily on high-definition (HD) maps as strong driving priors. However, the availability and accuracy of these priors are not guaranteed due to substantial costs to build, localization errors of vehicles, or ongoing road constructions. In this paper, we introduce MFTP, a Map-Free Trajectory Prediction method that offers several advantages. First, it eliminates the need for HD maps during inference while still benefiting from map priors during training via knowledge distillation. Second, we present a novel hierarchical encoder that effectively extracts spatial-temporal agent features and aggregates them into multiple trajectory queries. Additionally, we introduce an iterative decoder that sequentially decodes trajectory queries to generate the final predictions. Extensive experiments show that our approach achieves state-of-the-art performance on the Argoverse dataset under the map-free setting.
Via