Topic:Trajectory Prediction
What is Trajectory Prediction? Trajectory prediction is the process of forecasting the future path of moving objects based on historical trajectory data.
Papers and Code
Jul 02, 2025
Abstract:Accurate motion forecasting is critical for safe and efficient autonomous driving, enabling vehicles to predict future trajectories and make informed decisions in complex traffic scenarios. Most of the current designs of motion prediction models are based on the major representation of lane centerlines, which limits their capability to capture critical road environments and traffic rules and constraints. In this work, we propose an enhanced motion forecasting model informed by multiple vector map elements, including lane boundaries and road edges, that facilitates a richer and more complete representation of driving environments. An effective feature fusion strategy is developed to merge information in different vector map components, where the model learns holistic information on road structures and their interactions with agents. Since encoding more information about the road environment increases memory usage and is computationally expensive, we developed an effective pruning mechanism that filters the most relevant map connections to the target agent, ensuring computational efficiency while maintaining essential spatial and semantic relationships for accurate trajectory prediction. Overcoming the limitations of lane centerline-based models, our method provides a more informative and efficient representation of the driving environment and advances the state of the art for autonomous vehicle motion forecasting. We verify our approach with extensive experiments on the Argoverse 2 motion forecasting dataset, where our method maintains competitiveness on AV2 while achieving improved performance. Index Terms-Autonomous driving, trajectory prediction, vector map elements, road topology, connection pruning, Argoverse 2.
* Accepted at the 17th IEEE International Conference on Advanced
Computational Intelligence (ICACI 2025)
Via

Jul 01, 2025
Abstract:This work introduces Robots Imitating Generated Videos (RIGVid), a system that enables robots to perform complex manipulation tasks--such as pouring, wiping, and mixing--purely by imitating AI-generated videos, without requiring any physical demonstrations or robot-specific training. Given a language command and an initial scene image, a video diffusion model generates potential demonstration videos, and a vision-language model (VLM) automatically filters out results that do not follow the command. A 6D pose tracker then extracts object trajectories from the video, and the trajectories are retargeted to the robot in an embodiment-agnostic fashion. Through extensive real-world evaluations, we show that filtered generated videos are as effective as real demonstrations, and that performance improves with generation quality. We also show that relying on generated videos outperforms more compact alternatives such as keypoint prediction using VLMs, and that strong 6D pose tracking outperforms other ways to extract trajectories, such as dense feature point tracking. These findings suggest that videos produced by a state-of-the-art off-the-shelf model can offer an effective source of supervision for robotic manipulation.
Via

Jul 01, 2025
Abstract:Understanding and predicting the dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of videos by supervising the model with cross-view pointmap alignment during training. This geometric supervision enables the model to learn a shared 3D representation of the scene, allowing it to predict future video sequences from novel viewpoints based solely on the given RGB-D observations, without requiring camera poses as inputs. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, supporting robust robot manipulation and generalization to novel camera viewpoints.
Via

Jun 24, 2025
Abstract:This study provides a detailed analysis of current advancements in dynamic object tracking (DOT) and trajectory prediction (TP) methodologies, including their applications and challenges. It covers various approaches, such as feature-based, segmentation-based, estimation-based, and learning-based methods, evaluating their effectiveness, deployment, and limitations in real-world scenarios. The study highlights the significant impact of these technologies in automotive and autonomous vehicles, surveillance and security, healthcare, and industrial automation, contributing to safety and efficiency. Despite the progress, challenges such as improved generalization, computational efficiency, reduced data dependency, and ethical considerations still exist. The study suggests future research directions to address these challenges, emphasizing the importance of multimodal data integration, semantic information fusion, and developing context-aware systems, along with ethical and privacy-preserving frameworks.
Via

Jun 26, 2025
Abstract:We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
Via

Jun 24, 2025
Abstract:We present AnchorDP3, a diffusion policy framework for dual-arm robotic manipulation that achieves state-of-the-art performance in highly randomized environments. AnchorDP3 integrates three key innovations: (1) Simulator-Supervised Semantic Segmentation, using rendered ground truth to explicitly segment task-critical objects within the point cloud, which provides strong affordance priors; (2) Task-Conditioned Feature Encoders, lightweight modules processing augmented point clouds per task, enabling efficient multi-task learning through a shared diffusion-based action expert; (3) Affordance-Anchored Keypose Diffusion with Full State Supervision, replacing dense trajectory prediction with sparse, geometrically meaningful action anchors, i.e., keyposes such as pre-grasp pose, grasp pose directly anchored to affordances, drastically simplifying the prediction space; the action expert is forced to predict both robot joint angles and end-effector poses simultaneously, which exploits geometric consistency to accelerate convergence and boost accuracy. Trained on large-scale, procedurally generated simulation data, AnchorDP3 achieves a 98.7% average success rate in the RoboTwin benchmark across diverse tasks under extreme randomization of objects, clutter, table height, lighting, and backgrounds. This framework, when integrated with the RoboTwin real-to-sim pipeline, has the potential to enable fully autonomous generation of deployable visuomotor policies from only scene and instruction, totally eliminating human demonstrations from learning manipulation skills.
Via

Jun 23, 2025
Abstract:Interpretability plays a vital role in aligning and deploying deep learning models in critical care, especially in constantly evolving conditions that influence patient survival. However, common interpretability algorithms face unique challenges when applied to dynamic prediction tasks, where patient trajectories evolve over time. Gradient, Occlusion, and Permutation-based methods often struggle with time-varying target dependency and temporal smoothness. This work systematically analyzes these failure modes and supports learnable mask-based interpretability frameworks as alternatives, which can incorporate temporal continuity and label consistency constraints to learn feature importance over time. Here, we propose that learnable mask-based approaches for dynamic timeseries prediction problems provide more reliable and consistent interpretations for applications in critical care and similar domains.
* 13 pages, 10 figures, Accepted at the AMIA Annual Symposium 2025. The
final version will appear in the official proceedings
Via

Jun 23, 2025
Abstract:Physics-informed deep learning has achieved remarkable progress by embedding geometric priors, such as Hamiltonian symmetries and variational principles, into neural networks, enabling structure-preserving models that extrapolate with high accuracy. However, in systems with dissipation and holonomic constraints, ubiquitous in legged locomotion and multibody robotics, the canonical symplectic form becomes degenerate, undermining the very invariants that guarantee stability and long-term prediction. In this work, we tackle this foundational limitation by introducing Presymplectification Networks (PSNs), the first framework to learn the symplectification lift via Dirac structures, restoring a non-degenerate symplectic geometry by embedding constrained systems into a higher-dimensional manifold. Our architecture combines a recurrent encoder with a flow-matching objective to learn the augmented phase-space dynamics end-to-end. We then attach a lightweight Symplectic Network (SympNet) to forecast constrained trajectories while preserving energy, momentum, and constraint satisfaction. We demonstrate our method on the dynamics of the ANYmal quadruped robot, a challenging contact-rich, multibody system. To the best of our knowledge, this is the first framework that effectively bridges the gap between constrained, dissipative mechanical systems and symplectic learning, unlocking a whole new class of geometric machine learning models, grounded in first principles yet adaptable from data.
* Presented at Equivariant Systems: Theory and Applications in State
Estimation, Artificial Intelligence and Control, Robotics: Science and
Systems (RSS) 2025 Workshop, 6 Pages, 3 Figures
Via

Jun 17, 2025
Abstract:Accurate prediction of pedestrian trajectories is essential for applications in robotics and surveillance systems. While existing approaches primarily focus on social interactions between pedestrians, they often overlook the rich environmental context that significantly shapes human movement patterns. In this paper, we propose SceneAware, a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy. Our method leverages a Vision Transformer~(ViT) scene encoder to process environmental context from static scene images, while Multi-modal Large Language Models~(MLLMs) generate binary walkability masks that distinguish between accessible and restricted areas during training. We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints. The framework integrates collision penalty mechanisms that discourage predicted trajectories from violating physical boundaries, ensuring physically plausible predictions. SceneAware is implemented in both deterministic and stochastic variants. Comprehensive experiments on the ETH/UCY benchmark datasets show that our approach outperforms state-of-the-art methods, with more than 50\% improvement over previous models. Our analysis based on different trajectory categories shows that the model performs consistently well across various types of pedestrian movement. This highlights the importance of using explicit scene information and shows that our scene-aware approach is both effective and reliable in generating accurate and physically plausible predictions. Code is available at: https://github.com/juho127/SceneAware.
Via

Jun 14, 2025
Abstract:Accurate driving behavior modeling is fundamental to safe and efficient trajectory prediction, yet remains challenging in complex traffic scenarios. This paper presents a novel Inverse Reinforcement Learning (IRL) framework that captures human-like decision-making by inferring diverse reward functions, enabling robust cross-scenario adaptability. The learned reward function is utilized to maximize the likelihood of output by the encoder-decoder architecture that combines Mamba blocks for efficient long-sequence dependency modeling with graph attention networks to encode spatial interactions among traffic agents. Comprehensive evaluations on urban intersections and roundabouts demonstrate that the proposed method not only outperforms various popular approaches in prediction accuracy but also achieves 2 times higher generalization performance to unseen scenarios compared to other IRL-based method.
Via
