Topic:Trajectory Prediction
What is Trajectory Prediction? Trajectory prediction is the process of forecasting the future path of moving objects based on historical trajectory data.
Papers and Code
Jan 27, 2025
Abstract:We study the Out-of-Distribution (OoD) generalization ability of three SotA trajectory prediction models with comparable In-Distribution (ID) performance but different model designs. We investigate the influence of inductive bias, size of training data and data augmentation strategy by training the models on Argoverse 2 (A2) and testing on Waymo Open Motion (WO) and vice versa. We find that the smallest model with highest inductive bias exhibits the best OoD generalization across different augmentation strategies when trained on the smaller A2 dataset and tested on the large WO dataset. In the converse setting, training all models on the larger WO dataset and testing on the smaller A2 dataset, we find that all models generalize poorly, even though the model with the highest inductive bias still exhibits the best generalization ability. We discuss possible reasons for this surprising finding and draw conclusions about the design and test of trajectory prediction models and benchmarks.
* arXiv admin note: text overlap with arXiv:2407.13431
Via
Jan 27, 2025
Abstract:Scene and object reconstruction is an important problem in robotics, in particular in planning collision-free trajectories or in object manipulation. This paper compares two strategies for the reconstruction of nonvisible parts of the object surface from a single RGB-D camera view. The first method, named DeepSDF predicts the Signed Distance Transform to the object surface for a given point in 3D space. The second method, named MirrorNet reconstructs the occluded objects' parts by generating images from the other side of the observed object. Experiments performed with objects from the ShapeNet dataset, show that the view-dependent MirrorNet is faster and has smaller reconstruction errors in most categories.
Via
Jan 26, 2025
Abstract:Achieving human-like driving behaviors in complex open-world environments is a critical challenge in autonomous driving. Contemporary learning-based planning approaches such as imitation learning methods often struggle to balance competing objectives and lack of safety assurance,due to limited adaptability and inadequacy in learning complex multi-modal behaviors commonly exhibited in human planning, not to mention their strong reliance on the fallback strategy with predefined rules. We propose a novel transformer-based Diffusion Planner for closed-loop planning, which can effectively model multi-modal driving behavior and ensure trajectory quality without any rule-based refinement. Our model supports joint modeling of both prediction and planning tasks under the same architecture, enabling cooperative behaviors between vehicles. Moreover, by learning the gradient of the trajectory score function and employing a flexible classifier guidance mechanism, Diffusion Planner effectively achieves safe and adaptable planning behaviors. Evaluations on the large-scale real-world autonomous planning benchmark nuPlan and our newly collected 200-hour delivery-vehicle driving dataset demonstrate that Diffusion Planner achieves state-of-the-art closed-loop performance with robust transferability in diverse driving styles.
Via
Jan 23, 2025
Abstract:Accurate prediction of pedestrian trajectories is crucial for enhancing the safety of autonomous vehicles and reducing traffic fatalities involving pedestrians. While numerous studies have focused on modeling interactions among pedestrians to forecast their movements, the influence of environmental factors and scene-object placements has been comparatively underexplored. In this paper, we present a novel trajectory prediction model that integrates both pedestrian interactions and environmental context to improve prediction accuracy. Our approach captures spatial and temporal interactions among pedestrians within a sparse graph framework. To account for pedestrian-scene interactions, we employ advanced image enhancement and semantic segmentation techniques to extract detailed scene features. These scene and interaction features are then fused through a cross-attention mechanism, enabling the model to prioritize relevant environmental factors that influence pedestrian movements. Finally, a temporal convolutional network processes the fused features to predict future pedestrian trajectories. Experimental results demonstrate that our method significantly outperforms existing state-of-the-art approaches, achieving ADE and FDE values of 0.252 and 0.372 meters, respectively, underscoring the importance of incorporating both social interactions and environmental context in pedestrian trajectory prediction.
* Accepted by 2024 International Conference on Intelligent Computing
and its Emerging Applications
Via
Jan 26, 2025
Abstract:In multi-domain learning, a single model is trained on diverse data domains to leverage shared knowledge and improve generalization. The order in which the data from these domains is used for training can significantly affect the model's performance on each domain. However, this dependence is under-studied. In this paper, we investigate the influence of training order (or data mixing) in multi-domain learning using the concept of Lie bracket of gradient vector fields. By analyzing the infinitesimal effects of changing the training order, we identify regions in the parameter space where altering the order between two training domains can benefit the target loss. We validate the predictions of our theoretical framework on the influence of training order (or data mixing) both on a toy example and bilingual LLM pre-training.
* NeurIPS 2024 Workshop on Mathematics of Modern Machine Learning
Via
Jan 25, 2025
Abstract:Recent work indicates that video recognition models are vulnerable to adversarial examples, posing a serious security risk to downstream applications. However, current research has primarily focused on adversarial attacks, with limited work exploring defense mechanisms. Furthermore, due to the spatial-temporal complexity of videos, existing video defense methods face issues of high cost, overfitting, and limited defense performance. Recently, diffusion-based adversarial purification methods have achieved robust defense performance in the image domain. However, due to the additional temporal dimension in videos, directly applying these diffusion-based adversarial purification methods to the video domain suffers performance and efficiency degradation. To achieve an efficient and effective video adversarial defense method, we propose the first diffusion-based video purification framework to improve video recognition models' adversarial robustness: VideoPure. Given an adversarial example, we first employ temporal DDIM inversion to transform the input distribution into a temporally consistent and trajectory-defined distribution, covering adversarial noise while preserving more video structure. Then, during DDIM denoising, we leverage intermediate results at each denoising step and conduct guided spatial-temporal optimization, removing adversarial noise while maintaining temporal consistency. Finally, we input the list of optimized intermediate results into the video recognition model for multi-step voting to obtain the predicted class. We investigate the defense performance of our method against black-box, gray-box, and adaptive attacks on benchmark datasets and models. Compared with other adversarial purification methods, our method overall demonstrates better defense performance against different attacks. Our code is available at https://github.com/deep-kaixun/VideoPure.
Via
Jan 23, 2025
Abstract:The maritime industry aims towards a sustainable future, which requires significant improvements in operational efficiency. Current approaches focus on minimising fuel consumption and emissions through greater autonomy. Efficient and safe autonomous navigation requires high-fidelity ship motion models applicable to real-world conditions. Although physics-based ship motion models can predict ships' motion with sub-second resolution, their validation in real-world conditions is rarely found in the literature. This study presents a physics-based 3D dynamics motion model that is tailored to a container-ship, and compares its predictions against real-world voyages. The model integrates vessel motion over time and accounts for its hydrodynamic behavior under different environmental conditions. The model's predictions are evaluated against real vessel data both visually and using multiple distance measures. Both methodologies demonstrate that the model's predictions align closely with the real-world trajectories of the container-ship.
Via
Jan 21, 2025
Abstract:Traditional Visual Simultaneous Localization and Mapping (vSLAM) systems focus solely on static scene structures, overlooking dynamic elements in the environment. Although effective for accurate visual odometry in complex scenarios, these methods discard crucial information about moving objects. By incorporating this information into a Dynamic SLAM framework, the motion of dynamic entities can be estimated, enhancing navigation whilst ensuring accurate localization. However, the fundamental formulation of Dynamic SLAM remains an open challenge, with no consensus on the optimal approach for accurate motion estimation within a SLAM pipeline. Therefore, we developed DynoSAM, an open-source framework for Dynamic SLAM that enables the efficient implementation, testing, and comparison of various Dynamic SLAM optimization formulations. DynoSAM integrates static and dynamic measurements into a unified optimization problem solved using factor graphs, simultaneously estimating camera poses, static scene, object motion or poses, and object structures. We evaluate DynoSAM across diverse simulated and real-world datasets, achieving state-of-the-art motion estimation in indoor and outdoor environments, with substantial improvements over existing systems. Additionally, we demonstrate DynoSAM utility in downstream applications, including 3D reconstruction of dynamic scenes and trajectory prediction, thereby showcasing potential for advancing dynamic object-aware SLAM systems. DynoSAM is open-sourced at https://github.com/ACFR-RPG/DynOSAM.
* 20 pages, 10 figures. Submitted to T-RO Visual SLAM SI 2025
Via
Jan 20, 2025
Abstract:Recent breakthroughs in autonomous driving have revolutionized the way vehicles perceive and interact with their surroundings. In particular, world models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. Such models unify perception, prediction, and planning, thereby enabling autonomous systems to make rapid, informed decisions under complex and often unpredictable conditions. Research trends span diverse areas, including 4D occupancy prediction and generative data synthesis, all of which bolster scene understanding and trajectory forecasting. Notably, recent works exploit large-scale pretraining and advanced self-supervised learning to scale up models' capacity for rare-event simulation and real-time interaction. In addressing key challenges -- ranging from domain adaptation and long-tail anomaly detection to multimodal fusion -- these world models pave the way for more robust, reliable, and adaptable autonomous driving solutions. This survey systematically reviews the state of the art, categorizing techniques by their focus on future prediction, behavior planning, and the interaction between the two. We also identify potential directions for future research, emphasizing holistic integration, improved computational efficiency, and advanced simulation. Our comprehensive analysis underscores the transformative role of world models in driving next-generation autonomous systems toward safer and more equitable mobility.
* Ongoing project
Via
Jan 21, 2025
Abstract:Mimicking the real interaction trajectory in the inference of the world model has been shown to improve the sample efficiency of model-based reinforcement learning (MBRL) algorithms. Many methods directly use known state sequences for reasoning. However, this approach fails to enhance the quality of reasoning by capturing the subtle variation between states. Much like how humans infer trends in event development from this variation, in this work, we introduce Global-Local variation Awareness Mamba-based world model (GLAM) that improves reasoning quality by perceiving and predicting variation between states. GLAM comprises two Mambabased parallel reasoning modules, GMamba and LMamba, which focus on perceiving variation from global and local perspectives, respectively, during the reasoning process. GMamba focuses on identifying patterns of variation between states in the input sequence and leverages these patterns to enhance the prediction of future state variation. LMamba emphasizes reasoning about unknown information, such as rewards, termination signals, and visual representations, by perceiving variation in adjacent states. By integrating the strengths of the two modules, GLAM accounts for highervalue variation in environmental changes, providing the agent with more efficient imagination-based training. We demonstrate that our method outperforms existing methods in normalized human scores on the Atari 100k benchmark.
Via